autoreject.
compute_thresholds
(epochs, method='bayesian_optimization', random_state=None, picks=None, augment=True, verbose='progressbar', n_jobs=1)[source]¶Compute thresholds for each channel.
The epochs objects whose thresholds must be computed.
‘bayesian_optimization’ or ‘random_search’
The seed of the pseudo random number generator to use
The channels to be considered for autoreject. If None, defaults to data channels {‘meg’, ‘eeg’}.
Whether to augment the data or not. By default it is True, but set it to False, if the channel locations are not available.
The verbosity of progress messages. If ‘progressbar’, use mne.utils.ProgressBar. If ‘tqdm’, use tqdm.tqdm. If ‘tqdm_notebook’, use tqdm.tqdm_notebook. If False, suppress all output messages.
Number of jobs to run in parallel
The channel-level rejection thresholds
Examples
For example, we can compute the channel-level thresholds for all the EEG sensors this way:
>>> compute_thresholds(epochs)